115=23t+t^2

Simple and best practice solution for 115=23t+t^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 115=23t+t^2 equation:



115=23t+t^2
We move all terms to the left:
115-(23t+t^2)=0
We get rid of parentheses
-t^2-23t+115=0
We add all the numbers together, and all the variables
-1t^2-23t+115=0
a = -1; b = -23; c = +115;
Δ = b2-4ac
Δ = -232-4·(-1)·115
Δ = 989
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-23)-\sqrt{989}}{2*-1}=\frac{23-\sqrt{989}}{-2} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-23)+\sqrt{989}}{2*-1}=\frac{23+\sqrt{989}}{-2} $

See similar equations:

| 10x-8-2x+14=x+8+(2x+13) | | -2-3k-2=-2k+8-1k | | (-4(3x+7)=-84 | | 2(x+3)-x=17 | | 6x=(x+2)x5 | | 6x=(x+2)5 | | 0.05x+0.20(5)=0.14(x+5) | | 2x-1/9=-1 | | 2x+53=x-17 | | 2n+21=90 | | 3(x=2/5)=x-1/3 | | 3x−2=2x+9 | | x+(x-4)+(x+3)=75 | | x+(x+-4)+3x=75 | | X•x•x=1 | | 2x-4(x-2)=-3+5x-45 | | -x+5x-7=1 | | 24/x+5=4 | | x-4+2x+10+27=180 | | 2(x-6)=44 | | 24/z+5=4 | | 14p+14=12p | | 8=t/5+5 | | 6x=(x+2)×5 | | f/3+17=19 | | 18-20t=-19t+6+5 | | -13-5z=3z+19 | | 9-2f=1+6f | | -x/6=2x+522 | | -1-8y-7=-10-10y | | -2d+4=10 | | X+0.15(20)=0.25(x+20) |

Equations solver categories